If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2+76x+8=0
a = 36; b = 76; c = +8;
Δ = b2-4ac
Δ = 762-4·36·8
Δ = 4624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4624}=68$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(76)-68}{2*36}=\frac{-144}{72} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(76)+68}{2*36}=\frac{-8}{72} =-1/9 $
| 15.6-x÷x×100=35.5 | | 35.5=15.6-x÷x×100 | | 6(2+3)=x+20 | | 40+0,5x=x | | 6-(4x+2)=12 | | 4+(7x+4)=15 | | 2.5x+1.5x+18=3.8x+1.6x | | 3-z/4=11 | | P-4+4=5p+12 | | 3n-+5=8n | | 4x+2=-2x-28 | | 1-z=10 | | -8-4+r=38 | | 9u=-28-5u | | -5.1+x-3=-53 | | -51+x-3=-53 | | u+5u-4=-34 | | 14a=59 | | x/8-1=x/12 | | 1,5a+a=8 | | 6(4x+3)=72 | | 8x-1=5x-16 | | 7^(2x-11)=12^x | | 20-5c+4c=9 | | 5^a=1/125 | | 0.5x+1x=9 | | 8-0.25x+9=13 | | 48=15x+3 | | x+(x*0.1)=165 | | 2-(12y+15)=2-(31-5y) | | 6x-(2x-4)=2x-12 | | (0.6)^n=0.046656 |